Development of Enzymes Involved in Photosynthetic Carbon Assimilation in Greening Seedlings of Maize (Zea mays).
نویسندگان
چکیده
Upon illumination of dark-grown maize seedlings (5 days old) with incandescent light, there occurred a nearly simultaneous increase, after a certain lag period, in the activities of enzymes engaged in the C(4) pathway and the Calvin-Benson cycle. The light-induced biosynthesis of chlorophyll (a and b) precedes the increase in enzyme activities and proceeds without lag phase. A diphasic feature in the elevation of enzyme activities as a function of the intensities of light provided was observed; the increase in enzyme activities was enhanced by light intensities greater than 10(3) ergs per square centimeter per second in comparison with light of lower intensities. Under light intensities greater than 10(3) ergs per square centimeter per second, the simultaneous addition of levulinic acid, which inhibited chlorophyll formation, markedly reduced the increase of enzyme activities. However, neither the diphasic light effect nor the inhibitory effect of levulinic acid was observed with ribulose-1,5-bisphosphate carboxylase. The enzyme activities in the dark-grown maize seedlings were enhanced by a brief irradiation with the red light and the red light effect was reversed by the following far red light treatment. The red light-induced increase in the enzyme activities did not accompany chlorophyll synthesis, and was completely inhibited by cycloheximide, indicating that enzyme synthesis rather than activation might be involved. Light may play a dual role in enzyme induction; one is as an energy source through the photosystems at high intensities and the other is presumably as a signal mediated by phytochrome at low intensities.
منابع مشابه
Relationship between CO2 Assimilation, Photosynthetic Electron Transport, and Active O2 Metabolism in Leaves of Maize in the Field during Periods of Low Temperature
Measurements of the quantum efficiencies of photosynthetic electron transport through photosystem II (phiPSII) and CO2 assimilation (phiCO2) were made simultaneously on leaves of maize (Zea mays) crops in the United Kingdom during the early growing season, when chilling conditions were experienced. The activities of a range of enzymes involved with scavenging active O2 species and the levels of...
متن کاملResponses of growth and antioxidative enzymes to various concentrations of nickel in Zea mays leaves and roots. Fatemeh Ghasemi*, Reza Heidari, Rashid Jameii and Latifeh Purakbar
To assess nickel-induced toxicity in plants, Zea mays seeds were germinated and cultured on nutrient solution with nickel concentrations of 50-200 μM for a period of two weeks. Observed biological makers included biomass, soluble and total protein contents, and the activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), catalase (CAT), and phenylalanine ammonia-lyase (PAL) in the l...
متن کاملDegree of salt tolerance in some newly developed maize (Zea mays L.) varieties. Maria Zahoor*, Rehana Khaliq, Zafar Ullah Zafar and Habib-ur-Rehman Athar
Salinity is a major abiotic-stress worldwide which decreases crop growth productivity. The objective of the present study was to investigate whether salt stress has adverse effects on growth, photosynthetic efficiency, biochemical properties and nutrient status of maize. An experiment was carried out with seeds of four varieties of maize which were allowed to germinate for one week. Afterwards,...
متن کاملIndependent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species.
In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor...
متن کاملInfluence of Exogenous Application of Silicon on Physiological Response of Salt-stressed Maize (Zea mays L.)
The influence of silicon (Si, 3 mM), sodium chloride (NaCl, 135 mM), and Si, 3 mM + NaCl, 135 mM supply on chlorophyll content, photosynthetic activity (CO2 -fixation), the concentration of malondialdehyde (MDA) and H2O2, activities of superoxide dismutase (SOD), catalase (CAT) enzymes, free proline and protein contents were studied in maize seedlings leaves after two month of treatments. The r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 65 2 شماره
صفحات -
تاریخ انتشار 1980